
ROSCON 2021
Executor Workshop

LOCK-FREE ROS 2 EXECUTOR: A
RING-BUFFER TO RULE THEM ALL

Dr Pablo Ghiglino

CEO and Founder

pablo.ghiglino@klepsydra.com

www.klepsydra.com

http://www.klepsydra.com

LOCK-FREE PROGRAMMING

• Compare-and-swap (CAS) is an instruction
used in multithreading to achieve
synchronisation. It compares the contents of
a memory location with a given value and,
only if they are the same, modifies the
contents of that memory location to a new
given value. This is done as a single
atomic operation.

• Compare-and-Swap has been an integral
part of the IBM 370 architectures since
1970.

• Maurice Herlihy (1991) proved that CAS can
implement more of these algorithms than
atomic read, write, and fetch-and-add

LOCK-FREE PROGRAMMING

• Threads need to acquire lock to access resource.

• Context switch:

• Suspended while resource is locked by
someone else

• Awaken when resource is available.

• Not deterministic, power consuming context switch.

• Threads access resources using ‘Atomic Operations’

• Compare and Swap (CAS):

• Try to update a memory entry

• If not possible tried again

• No locks involved, but ‘busy wait’

• No context switch required.

KLEPSYDRA RING-BUFFER

Klepsydra SDK

Sensors External
Comms Other Events

Application

Operating System

Cobham Microcontroller 716
Power consumption vs Data Processing

C
P

U
 (%

)

10

33

55

78

100

Data processing rate (Hz)

0 10 20 30 40

Traditional
edge software

Klepsydra

Event Loop

Sensor Multiplexer

Klepsydra Ring-buffer

Producer 1

Consumer 1 Consumer 2

Producer 2

Producer 3

Consumer

Producer 1

5

ROS2 Realm

Klepsydra Realm
Scheduler

Producer 1

Consumer 2

Producer 2

Event Loop

ROS2 Timer

ROS2 Timer ROS2 PublisherROS2 Publisher

Consumer 3
Consumer 1

ROS2 SubscriptionROS2 Subscription

Klepsydra Lock-free executor

Klepsydra Lock-free executor

How does it work?

•Similar implementation to the Static Single Thread Executor

•All subscriptions and timer tasks run on the same thread

•Publishers can run on any thread

Implementation details

•Subscriptions from all message types are treated as

Eventloop’s listeners

•Timers are treated as Eventloops scheduled functions

•Similar to the Static Single Thread, there is no cloning.

ROS2 CHALLENGES

Open issues in ROS2:

1. High CPU use of executor. (https://github.com/ros2/rclcpp/
issues/1637)

2. Large pointcloud pubsub is unstable when there are
many subscribers. (https://github.com/ros2/
rmw_cyclonedds/issues/292)

https://github.com/ros2/rclcpp/issues/1637
https://github.com/ros2/rclcpp/issues/1637
https://github.com/ros2/rmw_cyclonedds/issues/292
https://github.com/ros2/rmw_cyclonedds/issues/292
https://github.com/ros2/rmw_cyclonedds/issues/292

Eventloop Executor on Raspberry PI 4 I

9

Eventloop Executor on Raspberry Pi 4 II

10

Reference System Latency Comparison

11

CODE EXAMPLE

#include <kpsr_ros2_executor/executor_factory.hpp>
...

int main(int argc, char** argv) {
 ...
 rclcpp::init(0, nullptr);
 ...
 rclcpp::Executor::SharedPtr exec = kpsr::ros2::ExecutorFactory::createExecutor(kpsr::ros2::QueueSize::_256, false);

 ...
}

API Explained

1. Klepsydra offers a factory of executors. Mapping to nodes can be customised via configuration file.

2. Factory returns shared pointer to rclcpp::Executor

3. Size of underlying ring-buffers to be provided by constructor. It can be customised via configuration file.

4. “Test” version available (last bool arg). This test version is a synchronous, single-thread, blocking queue.

ROS2 Realm

Klepsydra Realm
Producer 1

Consumer 1 Consumer 2

Sensor Multiplexer

Multiplexer Executor

ROS2 Subscription ROS2 Subscription

ROS2 Publisher

How does it work?

• Each consumer on its own

thread

• Processing rate can be

anything

• Data integrity guaranteed

Best performance in the following

scenarios

• Few producers and many

consumers

• Large data sets (LiDAR,

Images, etc)

• Power reduction and

throughput needs

ROS2 Node

Data streaming approach to
ROS2 Executors

Camera

Video
Streaming

Lidar

Radar

IMU

Navigation
Sensors

Vision Based
Navigation

Navigation and
Control

ROS2 Node ROS2 Node

Klepsydra Executors can be mapped to nodes (many-to-many) enabling low CPU usage, high throughput
and determinism.

Conclusions

Benefits

•Low CPU usage

•High throughput with linearly growing CPU usage

•Easy integration.

Best performance in the following scenarios

•Many producers and consumers

•Low to medium data sets

•Power reduction and throughput needs

CONTACT INFORMATION

Dr Pablo Ghiglino

pablo.ghiglino@klepsydra.com

+41786931544

www.klepsydra.com

linkedin.com/company/klepsydra-technologies

mailto:pablo.ghiglino@klepsydra.com
http://www.klepsydra.com
http://linkedin.com/company/klepsydra-technologies

