
Safely in time
Real-time and safety-critical software 
development

Geoffrey Biggs
Tier IV, Inc.



Warning: Incoming text



What this is relevant to

1 Physical

2 Data Link

3 Network

4 Transport

5 Session

6 Presentation

7 Application

Hardware & Connectivity (e.g. Ethernet)

Protocols (e.g. UDP/IP, TCP/IP)

Dev.
Tools

ROS Middleware (RMW)

OS + 
drivers

ROS API (C / C++ Libraries)

DDS

ROS 2 Applications



Safety-critical systems

Freedom from unacceptable risk of physical injury or of 
damage to the health of people, either directly, or indirectly as 
a result of damage to property or to the environment.

- IEC 61508 definition of “safety”



Freedom from unacceptable risk of physical injury or of 
damage to the health of people, either directly, or indirectly as 
a result of damage to property or to the environment.

- IEC 61508 definition of “safety”

Safety-critical systems



Safety-critical systems

Safety-critical systems are not:

● “The manipulator will never stab someone with its tool.”
● “The autonomous car will never run someone over.”

Safety-critical systems are:

● “The manipulator will correctly stop motion within 100ms when it 
detects a person within its reachable space, with no more than one 
failure in 1,000,000 hours of operation.”

● “The autonomous car will miss-identify a pedestrian within the lane no 
more than once in every 10,000,000,000 detections.”



What makes a system safety-critical?

In general, if there is a chance that it could cause harm in some way, it 
is safety-critical.

Is your mobile robot safety-critical?
Does it operate near people?

Is it large or heavy enough to cause injury?
Is it a trip hazard? (Hello, Roomba!)
How great is any risk presented?

What if your robot isn’t moving?



How is safety achieved?

Passive safety
Safe by its nature, e.g. shielded battery contacts
We are not particularly concerned about this approach

Functional safety
Must function correctly at the correct time or within the correct 
time period to be safe
This is what interests us



How is safety achieved?

Passive safety
Safe by its nature, e.g. shielded battery contacts
We are not particularly concerned about this approach

Functional safety
Must function correctly at the correct time or within the correct 
time period to be safe
This is what interests us



Safety requirements and real-time

Safety requirements typically have a real time aspect.
REQ042: The brakes must be applied within 100ms to reduce the 
severity of harm caused to a pedestrian below an unacceptable 
level

Safety requirements often drive other real-time requirements
REQ042.1: The sense-plan-act cycle must operate at 100ms or 
faster to provide sufficient reaction time

Sometimes a real-time failure can lead to a safety failure later on



Safety requirements and real-time

Not all real-time requirements are safety-critical
REQ043: The manipulator must move the spoon from the bowl to 
the eating position within five seconds

This relates to the balance between availability and safety
If not meeting the deadline is merely an annoyance, then all that 
will happen is no one will buy your robot.

100% safe 100% available



Finding the safety-critical real-time 
requirements

Not always obvious

The easy ones
If violating the real-time deadline means harm is caused, then it is 
safety-critical



Finding the safety-critical real-time 
requirements

Not always obvious

The easy ones
If violating the real-time deadline means harm is caused, then it is 
safety-critical
The requirements that support those are also probably 
safety-critical, e.g. motor control loops



Finding the safety-critical real-time 
requirements

The hard ones are very application- and design-specific

How is behaviour affected if control signals are late?

What if all control signals are within the deadline, but still irregular?

A robot with a long mission span may need rejuvenation periodically
How much time is available for rejuvenation?
How much harm is caused if rejuvenation takes too long?
Is that harm greater or less than the harm caused by not 
rejuvenating?
(Can you acquire your resources in deterministic time?)



Specifying real-time requirements

Guaranteeing deadlines is typically impossible on most modern 
hardware

e.g. Large-scale x86 and ARM CPUs

Guarantees are broken by the complex nature of instruction 
execution

Out-of-order execution, branch prediction, etc.

Real-time guarantees instead must be given as probabilities
e.g. “Probability of missing the deadline is 10-6 per hour of 
operation”

Someone please make a tool that can perform this type of analysis



What do you do when you have found your 
safety-critical real-time requirements?

You must:
Develop a system that meets those requirements
Prove to the necessary level of confidence that your system 
meets those requirements

This means following a safety-critical development process



The four steps of safety-critical software 
development

1. Design system behaviour to satisfy the requirement
2. Verify that the design will satisfy the requirement
3. Implement software that meets the design
4. Verify that the software does meet the design



Design system behaviour to satisfy the 
requirement

When doing the design, consider factors of the design that will 
impact execution time

Longest execution path time
Whether each execution cycle is identical in execution time or not
How error cases impact deadline achievement
Time required to recover from an error (or to achieve a safe state)

Also consider factors that will impact whether an action that must be 
performed by a deadline can be performed at all

Don’t forget to design a system that knows if it is failing a deadline



Verify that the design will satisfy the 
requirement

You must provide evidence to back up this claim
Timing diagrams, process scheduling plans, etc.

Formal proofs are particularly useful for real-time claims
Linear Temporal Logic can help prove the liveliness aspects of 
algorithms
Tools such as TLA+ can be used to show there are no deadlocks

Don’t forget to consider undesired conditions
Do failure analyses (FMEA, FTA, etc.) to know when something 
might break and impact a deadline



Implement software that meets the design

In general, follow software engineering best-practices.
Follow a coding style
Test your code properly (not just unit tests)
Use static analysis tools

In particular relevant to coding practices that may impact real-time 
performance

e.g. Memory allocations in the wrong places - there are tools that 
can find these but you need style rules as well



Verify that the software does meet the 
design

Understand what you are testing against
The hazards, not the safety requirements derived from them

Use fault injection to verify real-time behaviour, real-time failure, and 
the impact of error paths on meeting deadlines

Inject random delays to test deadline failures
Inject delays in communication, execution, memory access, …

Verify against models of the system that can simulate execution time 
and process scheduling

All verification results need to specify a confidence level



Know your tools

Many tools can impact the achievement of deadlines, and not all are 
obvious

Programming languages
Does your programming language have the necessary constructs 
for real time?
How easy is it to create priority inversions?

Compilers
Is the timing of constructs predictable?
What impact does optimisation have on execution time?



Know your tools

Tools for measuring execution
Are the tools you use accurate?
How do you know that? Have you verified it yourself?

Tools for verifying execution
Does your memory analyser work correctly?
Does your test environment accurately match the production 
environment?

Tools for generating implementations (e.g. Simulink)
How do you know they produce the correct code?



Know your tools

How do you know you can trust your compiler?



Know your tools

How do you know you can trust your compiler?

Hint: You can’t.

“Every compiler we tested was found to crash and also to silently 
generate wrong code when presented with valid input.”

- Yang et al., “Finding and understanding bugs in C compilers”, ACM SIGPLAN 2011



Summary

If your robot not reacting in time means it might squash the cat, you 
have to think about safety.



Summary

If your robot not reacting in time means it might squash the cat, you 
have to think about safety.

If you don’t want your robot to squash the cat, it must be able to react 
in a timely manner.



Summary

If your robot not reacting in time means it might squash the cat, you 
have to think about safety.

If you don’t want your robot to squash the cat, it must be able to react 
in a timely manner.

If you want to show that it (probably) won’t squash the cat, you must 
develop such that you can prove with sufficient confidence that it will 
react in a timely manner.



Summary

If your robot not reacting in time means it might squash the cat, you 
have to think about safety.

If you don’t want your robot to squash the cat, it must be able to react 
in a timely manner.

If you want to show that it (probably) won’t squash the cat, you must 
develop such that you can prove with sufficient confidence that it will 
react in a timely manner.

This is safety-critical development of real-time software.


